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J. Phys. A: Math. Gen. 19 (1986) L631-L635. Printed in Great Britain 

LE’lTER TO THE EDITOR 

The spectra of quantum chains with free boundary conditions 
and Virasoro algebras 

G von Gehlen and V Rittenberg 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 17 March 1986 

Abstract. At the critical point the spectra of quantum chains with periodic and twisted 
boundary conditions are described by irreducible representations of two Virasoro algebras 
with the same central charge. We show that in the case of free boundary conditions, the 
spectra can be understood in terms of irreducible representations of a single Virasoro 
algebra. For the k ing  and the three-state Potts models, the corresponding irreducible 
representations are identified. 

Using conformal invariance (Cardy 1986a and references therein) in a recent paper 
we have determined numerically the finite-size limit of the spectra of the three-state 
Potts quantum chain (von Gehlen and Rittenberg 1986b). Periodic and twisted boun- 
dary conditions have been used and it has been shown that the spectra can be described 
in terms of a few irreducible representations of two commuting Virasoro algebras. In 
this way all the bulk critical exponents have been determined. In the present letter 
we consider the spectra of quantum chains with free boundary conditions with the 
aim of determining all the surface critical exponents. 

We consider first the two-point correlation function in a half plane (-a < x < 00, 

y 3 0) with free boundary conditions. If we are at the critical point and the operator 
cp has scaling dimensions x, it was shown by Cardy (1984) using conformal invariance 
that the correlation function has the form 

where 

The function F ( p )  depends on the operator cp which appears in the correlation function 
and has the following asymptotic behaviours: 

where the function R ( p )  is regular at p = 0 and x, is the surface exponent (Binder 
1983, Cardy 1986a). We now perform the conformal transformation 

w = ( N / . r r )  l n z = ( N / . r r ) l n ( x + i y ) = . r + i u  (4) 

which maps the half plane on the strip (-a < .r <a, -4N C u s  fN). Here .r can be 
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interpreted as the Euclidean time. The correlation function on the strip is 

( d u b  7 I ) d U 2 ,  7 2 ) )  

x exp[ - ( T /  W x ,  + r )  ( 72 - T~ 11 (5) 

where a, is independent of u1 and v2. Assume now that the Euclidean time evolution 
of the system is described by a Hamiltonian H with eigenvalues E ( F ' ( r ) ( E ' F ' <  
P F ' ( 0 )  < FF'(  1) < . . .): 

~ l r )  = E ' F ) ( r ) l r )  (6) 

E'F'  being the ground state energy. Using the standard spectral decomposition, the 
correlation function of ( 5 )  can be re-expressed as follows: 

(v(u*r 71)v(u2, 722)) 

= 2 exp[-(E'F'(r) - E ' F ' N ~ ,  - . ~ J I ( o I ~ ( o ,  U ~ ) I ~ X ~ I ~ ( O ,  UJO). (7)  
r = O  

In the sum over the r one has to keep in mind that several states can correspond to 
the same energy level E ' F ' ( r ) .  

Comparing (5) and (6) we notice the relation 

( N / T ) ( E ' ~ ' ( ~ ) - E ( ~ ) )  = x , + r  ( r=O, l ,  ...). (8) 

We now recall that the known surface exponents x, coincide with lowest weights A of 
irreducible representations of the Virasoro algebra with the central charge c fixed by 
the universality class (Cardy 1984, von Gehlen and Rittenberg 1986a). The relation 
(8 )  then suggests that the finite-size limit of the spectrum of the Hamiltonian with free 
boundary conditions is given by the lowest weight and the descendents of irreducible 
representations of the Virasoro algebra. The degeneracy of the level ( A + r )  that we 
denote by d(A, r )  can be computed using the character formula of Rocha-Caridi (1985). 
It is important to notice that in the case of periodic or twisted boundary conditions 
the spectrum in the finite-size limit is given by a pair of irreducible representations 
( A ,  L) corresponding to two Virasoro algebras and has a much richer structure (Cardy 
1986b, von Gehlen and Rittenberg 1986b, Henkel 1986). 

Table 1. The degeneracy d ( A ,  r )  for the irreducible representation A and the descendent 
r for the Ising model. 

A 0 1 2  3 4 5 6 7 8 9 10 

0 1 0 1 1 2 2 3 3 5 5 7  
$ 1 1 1 1 2 2 3 4 5 6 8  

1 1  1 1  2 3 4 5 6 8 10 
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In order to check these ideas we consider the Ising and the three-state Potts 
quantum chains. We start with the Ising model which is defined by the Hamiltonian 

N 

( r N + I  = 0) (9a) H ( F ) =  I -2 (c+i+Ariri+i) 
i = l  

where 

O) r= ( l  0 1  o) 
0 -1 

and N indicates the number of sites. This Hamiltonian can be diagonalised exactly 
(Boccara and Sarma 1974, Burkhardt and Guim 1985); at the critical point A = 1 it 
has the form 

where a,( a:)  are fermionic annihilation (creation) operators. Since the Ising model 
has 2, symmetry, we consider separately the charge-zero spectrum (even number of 
fermions) EbF’(r) and charge-one sector (odd number of fermions) EiF’( r ) .  Neglecting 
i compared with N in (10) we obtain 

( r = 2 , 3 . .  .) 

The Virasoro algebra for the Ising model has central charge c = 4 and the possible 
values of the lowest weights A of the irreducible representations are A=O,  4 and & 
(Belavin et a1 1984). For each representation A one can compute the degeneracy d(A, r )  
and this was done for us by Altschuler and Lacki (1985) using the character formula 
of Rocha-Caridi (1985). In table 1 we show the values of d(A, r )  up to r = 10. It is 
now a simple exercise to check, using (10) and table 1, that the spectrum 8hF’(r)  is 
given by A = 0 (starting with the second descendent) and the spectrum 8‘,F’( r )  is given 
by A = 4 (x, is indeed f for the spin-spin correlation (Cardy 1984)). 

We now consider the three-state Potts quantum chain given by the Hamiltonian 

The system has a critical point again at A = 1. The normalisation factor in (13) fixes 
the Euclidean time scale and it was found from our study of the model with periodic 
and twisted boundary conditions (von Gehlen et a1 1986, von Gehlen and Rittenberg 
1986b). The model is invariant under Z, (internal symmetry) and parity transformations 
and the Hamiltonian splits into six sectors with the corresponding spectra 
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Table 2. The  spectrum 8‘hF) for the three-state Potts model in the charge-zero sector. The 
Van den Broeck-Schwartz approximants for the levels with positive panty (Eh’ ’( + )) and 
negative panty ( SAF’( - ))  are given. The figure in brackets in the last two columns indicates 
the estimated error. On the left-hand side of the table we indicate the number of states 
having $AF’ = A+ r generated by the irreducible representations A = 0 and 3. 

2 1 -  2.000 ( 5 )  - 
3 1 1 -  2.99 (2), 2.98 (3) 
4 2 1 4.004 (6), 3.995 (8), 4.01 (3) - 
5 2 2 -  4.98 (3), 4.98 (2), 5.00 (3), 

6 4 3 5.97 (5), 5.98 (4), 5.99 (6), 5.8 (2) - 
7 4 4  7.0 (2), 6.9 (3), >6.6 (?)  

4.99 (3) 

where Q indicates the charge sector and P the parity. The symmetry under charge 
conjugation of the Hamiltonian gives the identity 

E‘,F’( P, r )  = E y ’ (  P, r )  (16) 

and we are thus left to compute four spectra. According to (8) we have to determine 
the quantities 

We have computed the energy levels Eg’(P,  r )  for chains up to twelve sites using 
the Lanczos (1950) method. For up to seven sites we have checked the results by 
standard Householder diagonalisation (unlike in the periodic boundary case (von 
Gehlen and Rittenberg 1986b) here for up to seven sites there is no degeneracy of 
levels for finite chains). We then have calculated the Van den Broeck-Schwartz (1979) 
approximants for the gg’(P,  r ) .  The results are shown in tables 2 and 3.  Obviously 
we have been able to determine only the lower part of the spectrum but it turns out 
that we have determined enough levels for our purpose. Already the levels for finite 
chains cluster into several groups, which results in the approximate degeneracy of 

Table 3. The spectrum 8:‘’ for the three-state Potts model in the charge-one sector. The 
Van den Broeck-Schwartz approximants for the levels with positive parity ( 8‘,F’( + ))  and 
negative panty (8 iF) ( - ) )  are given. On the left-hand side of the table we indicate the 
number of states having t4(1F) =j+  r generated by the irreducible representation A = 3. 

A +  r ($1 8’‘,?+) $‘,F’( - ) 

1- 3 - 0.6666. . . 
1.6666.. . 
2.6666.. . 
3.6666. . . 
4.6666. . . 
5.6666.. . 

6.6666. . . 
7.6666.. . 

8 
10 

0.6662 (4) - 

2.66 ( l ) ,  2.68 (4) - 
- 1.668 (2) 

- 3.64 (4), 3.66 (2) 
4.65 (4), 4.66 (3), 4.68 (3),4.67 (2) 
- 5.58 (8), 5.65 (7), 5.65 (5), 

5.66 (6), 5.66 (4) 
6.6 (2), 6.55 (10) - 

>7.5 (?) 
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many levels % r ’ ( P ,  r )  in tables 2 and 3. We are certainly missing higher levels, e.g. 
at SiF,”( + ) 2 6, but we find exactly three levels around SiF)( + ) = 4. 

In order to explain the spectra we recall that for the three-state Potts model the 
central charge of the Virasoro algebra is c = 2 (Friedan et a1 1984, Dotsenko 1984). 
The possible values of A in this case are 

(18) A = O  1 I 1  2 21 2 I 3 9 40, 15, 8r 5 9  40, 3,  5 ,  8 9 

and the degeneracies d(A, r )  are known (von Gehlen and Rittenberg 1986b). Comparing 
the ‘experimental’ spectra with the possible spectra generated by the irreducible 
representations given in (18) we notice that the spectrum 

@ F )  = %b”( + ) + S p (  - ) (19) 

is obtained considering the representations with A = 0 and 3. This can be seen compar- 
ing the left-hand side of table 2 ,  where the number of states corresponding to each 
level is given, and the right-hand side of table 2 ,  where the ‘experimental’ data are 
shown. It is interesting to notice that from our short chains we have been able to 
identify the whole spectrum (any A from (18) would have shown up since we have 
found the largest one A = 3). A similar analysis for the charge-one sector 

%(1F) = %(1F)( + ) + @ F ) (  - ) (20) 

shows that the spectrum is given by the irreducible representation A =$. 
To summarise, we have identified the irreducible representations which give the 

finite-size limit of the spectra of the Ising and three-state Potts Hamiltonians with free 
boundary conditions., They are 

si”’ = (0) @F’ = (4) (Ising) 
5p= ( O ) ,  (3) g ( , F )  = g ( F )  2 = (L)  (three-state Potts). 

(21) 

We would like to thank M Henkel for useful discussions. 
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